
Creative Software Design

11 – Copy Constructor, Operator Overloading

Yoonsang Lee

Fall 2023

Midterm Exam

• Date & time: Dec 19, AM 09:30 ~ 10:30

• Place: IT.BT 609

• Scope: Lecture 8 ~ 13

• You cannot leave until 30 minutes after the start of the exam even if you finish the exam
earlier.

• That means, you cannot enter the room after 30 minutes from the start of the exam (do not
be late, never too late!).

• Please bring your student ID card to the exam.

• We will not accept questions unless the error in the problem is clearly evident. You should solve
the problem based on the information provided in the question.

• Problem types: true/false, single choice, multiple choices, short answer, fill-in-blank, ...

Schedule Updates

• Finish all lectures by Dec 5, and after that, only labs.

• Nov 28 (Tue): Lecture 11 (Today)

• Nov 29 (Wed): Lab 11-1

• Nov 30 (Thu): Lecture 12

• Dec 5 (Tue): Lecture 13

• Dec 6 (Wed): Lab 12-1

• Dec 7 (Thu): Lab 13-1

• Dec 12 (Tue): Lab 11-2

• Dec 13 (Wed): Lab 12-2

• Dec 14 (Thu): Lab 13-2

• Dec 19 (Tue): Final Exam

Outline

• Copy constructor

• friend, static

• Operator overloading

Copy constructor

• A copy constructor is a constructor that initializes

an object using another object of the same class.

• The general form is:

ClassName(const ClassName& src_obj);

When is a copy constructor called?

• When an object is returned by value.

• When an object is passed by value (not by address

value) as a function argument.

• When an object is constructed based on another

object of the same class.

class Point

{

public:

double x, y;

//...

};

Point getScaledPoint(double scale, Point p)

{

Point p_new;

p_new.x = p.x*scale; p_new.y = p.y*scale;

return p_new;

}

int main(int argc, char* argv[])

{

Point p1(0.1, 0.2);

Point p2 = getScaledPoint(2.0, p1);

Point p3 = p1;

Point p4(p1);

return 0;

}

• When an object is
returned by value.

• When an object is
passed by value (not
by address value) as
a function argument.

• When an object is
constructed based
on another object of
the same class.

When is a copy constructor called?

Default copy constructor

• A default copy constructor is implicitly created by

compiler if there is no user-defined copy

constructor.

• It does a member-wise copy between objects,

– where each member is copied by its own copy

constructor.

– This works fine in general, but does not work for some

cases. We should define our own copy constructor for

these cases.

Default copy constructor: Example 1

// by default copy constructor

// by default copy constructor

- Default copy constructor
copies each member of
the object

Default copy constructor: Example 2-1

s1.str

s2.str

“Hanyang”

→ runtime error: double free detected!

Default copy constructor: Example 2-2

//the space for ”HY” is deallocatred

//the address to ”HY” is copied

→ runtime error: double free detected!

→ cout << (deleted pointer) << endl;

User-defined copy constructor: Example

s1.str

s2.str

“Hanyang”

“Hanyang”

- The problem of deallocation by
delete operator was resolved

Default copy constructor & Default constructor

• Recall: A default constructor is implicitly created

by compiler if there is no user-defined constructor.

• If you define a copy constructor, the complier

doesn’t create the default constructor and default

copy constructor.

Copy constructor: Example

class Point

{

public:

double x, y;

Point(double x_, double y_):x(x_), y(y_) {}

// The most general form.

Point(const Point& p) { x = p.x; y = p.y; }

// This form compiles as well.

// In general, however, copy constructors are not expected

to modify the object passed in, so this form is not recommended

Point(Point& p) { x = p.x; y = p.y; }

// Compile error. If it were compiled, it would result in

infinite calling of copy constructor.

Point(Point p) { x = p.x; y = p.y; }

};

Quiz 1

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Friend Class and Function

● Functions or classes can be "friends" of another class (let's say ClassA).

○ If you declare them as "friends" in the definition of ClassA,

○ Then these "friends" can access all members of ClassA including priv

ate members.

class ClassA {

private:

int var_;

friend class ClassB;

friend void DoSomething(const ClassA& a);

};

class ClassB {

// ...

void Function(const ClassA& a) { cout << a.var_; } // OK.

};

void DoSomething(const ClassA& a) { cout << a.var_; } // OK.

Friend Class and Function

• "friend" should be used with caution.

– Too many "friend" functions or classes may lessen the value
of encapsulation / data hiding.

– If "friends" are used properly, they can enhance encapsulation
/ data hiding.
• For example, a LinkedList class may be allowed to access private members

of Node class, but all other classes are not.

• Note that access specifiers have no effect on the
meaning of friend declarations.

– "friend" can appear in private, protected, or public sections,
with no difference.

– https://en.cppreference.com/w/cpp/language/friend

https://en.cppreference.com/w/cpp/language/friend

Static Members

• Static member variables in a class are shared by all the

objects of the class.

– You must explicitly define static member variables outside of the

class, in the global scope.

• Because static member variables are not part of the individual class objects (they are

treated similarly to global variables, and get initialized when the program starts),

• Static member functions can only access static members.

– Static member functions cannot be virtual.

• Static members can be accessed by class name or object

name.

Static Members

• If the class is defined in a header file, the
static member definition is should be
placed in a source file.

• If you put the static member definition in
a header file, if that header file gets
included more than once, you’ll end up
with multiple definitions, which will cause
a linker error (much like a global variable).

Recall: Function Overloading

• Use multiple functions sharing the same name

– A family of functions that do the same thing but using

different argument lists

Operator Overloading

• An operator function is a special function form to overload an operator

• operator[op](arguments)

– [op] is a valid C++ operator

– e.g., operator+() overloads the + operator

• Note that C++ even allows redefining built-in operators such as +, -, *,

...

• There are two ways of operator overloading:

• a) overload as a class member function

• b) overload as a non-member function.

Operator overloading as member function

Operator overloading as member function

P1 + P2
→ P1.operator+(P2)

Operator overloading as member function

• P1 + P2

• → P1.operator+(P2)

• That means, the overloaded operator member function

gets invoked on the first operand.

• What if the first operand is not a class type, like

double?

– For example, 2.0 + P2 ?

• →You should overload a non-member operator

function!

Operator overloading as nonmember function

P1 + P2
→ operator+(P1, P2)

// Point P3 = operator+(a, P1);

Operator overloading as nonmember function

// Box B4 = B1 + B2;

Operator function

P1 + P2

P1.sum(P2) sum(P1, P2)

P1.operator+(P2)

as member function as nonmember function

operator+(P1,P2)

Quiz 2

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

• You should overload stream operators as non-member

functions

– because you cannot modify the first operand's class.

• Stream oprators are often declared as friend functions

of the class.

Box P1(3, 4, 5, 6, 7)

cout << P1;

cin >> P1;

cout << P1;

operator<<(cout, P1)

operator>>(cin, P1)

Operator Overloading: <<, >> operator

Operator Overloading: <<, >> operator

Assignment Operator(= operator) Overloading

• A default assignment operator is implicitly created

by compiler if there is no user-defined assignment

operator.

• It does a member-wise copy between objects.

– where each member is copied by its own assignment

operator.

– Like default copy constructor, this works fine in general,

but does not work for some cases.

#include <iostream>

using namespace std;

class Point

{

private:

double x, y;

public:

Point(double x_, double y_):x(x_), y(y_) {}

Point(const Point& p)

{ x = p.x; y = p.y; cout << "copy constructor" << endl; }

Point& operator=(const Point& p)

{ x = p.x; y = p.y; cout << "assignment operator" << endl; return *this;

}

};

int main()

{

Point p1(1,2);

Point p2(p1); // "copy constructor"

Point p3 = p1; // "copy constructor"

Point p4(2,3);

p4 = p1; // "assignment operator"

return 0;

}

Copy Constructor vs. Assignment Operator

#include <iostream>

using namespace std;

class Point

{

private:

double x, y;

public:

Point():x(0.0), y(0.0) {}

Point(double x_, double y_):x(x_), y(y_) {}

// inconsistent behavior with default assignment operator & assignments for primitive types

Point operator=(const Point& p)

{ x = p.x; y = p.y; return Point(*this); }

// same behavior as default assignment operator & assignments for primitive types-> use this!

Point& operator=(const Point& p)

{ x = p.x; y = p.y; return *this; }

friend ostream& operator<<(ostream& os, const Point& p);

};

ostream& operator<<(ostream& os, const Point& p)

{

os << "(" << p.x << ", " << p.y << ")";

return os;

}

int main()

{

Point p1(1,2);

Point p2, p3;

(p3 = p2) = p1;

cout << p1 << p2 << p3 << endl;

return 0;

}

Return Type of Assignment Operator

Default assignment operator: Example

Is it OK?

= operator copies the address

s1.str

s2.str

“Hanyang”

User-defined assignment operator: Example

s1.str

s2.str

“Hanyang”

“Hanyang”

Point operator-() { return Point(-x, -y); }

Point& operator-() { x=-x; y=-y; return *this;}

Operator Overloading: negation operator

1)

2)

1)

2)

1) is consistent with

primitive types.

Operator Overloading: increment operator

• Prefix increment operator: ++var

– the value of var is incremented by 1; then it returns the

value.

• Postfix increment operator: var++

– the original value of var is returned first; then var is

incremented by 1.

Operator Overloading: increment operator

(++P1) → P1.operator++()

Operator Overloading: increment operator

(++P1) → P1.operator++()
(P1++) → P1.operator++(0)

Reference: https://www.learncpp.com/cpp-tutorial/97-overloading-the-increment-and-decrement-operators/

https://www.learncpp.com/cpp-tutorial/97-overloading-the-increment-and-decrement-operators/

Operator Overloading: []

Quiz 3

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Operator Overloading: Summary

• In general, an operator whose result is ...

• New value: Returns the new value by value

– e.g. +, -, postfix ++, ...

• Existing value, but modified: Returns a reference to

the modified value.

– e.g. =, +=, prefix ++, ...

Operator Overloading: Summary

class A { // A a0, a1;

A& operator =(const A& a); // a0 = a1;

A operator +(const A& a) const; // a0 + a1

A operator +() const; // +a0

A& operator +=(const A& a); // a0 += a1;

A& operator ++(); // ++a0

A operator ++(int); // a0++

};

A operator +(const A& a0, const A& a1); // a0 + a1

A operator +(const A& a0); // +a0

A& operator +=(A& a0, const A& a1); // a0 += a1;

A& operator ++(A& a0); // ++a0

A operator ++(A& a0, int); // a0++

std::ostream& operator <<(std::ostream& out, const A& a); // cout << a0;

Operator Overloading: Summary

• The C++ language rarely puts constraints on operator

overloading such as

– what the overloaded operators do

– what should be the return type

• But in general, overloaded operators are expected to behave

as similar as possible to the built-in operators:

– operator+ is expected to add, rather than multiply its arguments,

– operator= is expected to assign

– Assignment operators return by reference to make it possible to

write a = b = c = d, because the built-in operators allow that.

Operator Overloading: Summary

● Most commonly overloaded operators are

○ Arithmetic operators : +, -, *, / …

○ Assignment operators : =, +=, -=, *= …

○ Comparison operators : <, >, <=, >=, ==, != …

○ For array or containers : [], () …

○ Rarely : ->, new, delete, ...

● Operator overloading must be used very carefully, since it can hamper

the readability seriously.

Operator that can be overloaded

Example 1

Converting Constructor & Operator Overloading

• Basically, constructors can convert some type (the

parameter type) to another type (the class

belonging the constructor).

• This can affect the behavior of overloaded

operators.

• See the following Example 2.

Example 2

class Complex {

public:

Complex() : real(0.0), imag(0.0) {}

Complex(double r, double i) : real(r), imag(i) {}

Complex(const Complex& c) : real(c.real), imag(c.imag) {}

Complex operator+(const Complex& c) const {

return Complex(real + c.real, imag + c.imag);

}

private:

double real, imag;

};

void Test() {

Complex a(1.0, 2.0), b(2.0, 5.0);

Complex c(a + b);

c = c + a;

}

Example 2

class Complex {

public:

Complex() : real(0.0), imag(0.0) {}

Complex(double r, double i) : real(r), imag(i) {}

Complex(const Complex& c) : real(c.real), imag(c.imag) {}

Complex operator+(const Complex& c) const;

private:

double real, imag;

};

void Test() {

Complex a(1.0, 2.0), b(2.0, 5.0), c;

c = a + b; // OK.

c = a + 3.0; // Error.

c = 2.0 + b; // Error.

}

Example 2

class Complex {

public:

Complex() : real(0.0), imag(0.0) {}

Complex(double v) : real(v), imag(0.0){}//Constructor for a

single v.

Complex(double r, double i) : real(r), imag(i) {}

Complex(const Complex& c) : real(c.real), imag(c.imag) {}

Complex operator+(const Complex& c) const;

private:

double real, imag;

};

void Test() {

Complex a(1.0, 2.0), b(2.0, 5.0), c;

c = a + b; // OK.

c = a + 3.0; // OK.

c = 2.0 + b; // Error.

}

Example 2

class Complex {

public:

Complex() : real(0.0), imag(0.0) {}

Complex(double v) : real(v), imag(0.0) {} // Constructor for a single v.

Complex(double r, double i) : real(r), imag(i) {}

Complex(const Complex& c) : real(c.real), imag(c.imag) {}

Complex& operator=(const Complex& c);

private:

double real, imag;

friend Complex operator+(const Complex& lhs, const Complex& rhs);

};

Complex operator+(const Complex& lhs, const Complex& rhs) {

return Complex(lhs.real + rhs.real, lhs.imag + rhs.imag);

}

void Test() {

Complex a(1.0, 2.0), b(2.0, 5.0), c;

c = a + b; // OK.

c = a + 3.0; // OK.

c = 2.0 + b; // OK.}

class Complex {

public:

Complex() : real(0.0), imag(0.0) {}

Complex(double v) : real(v), imag(0.0) {}

Complex(double r, double i) : real(r), imag(i) {}

Complex(const Complex& c) : real(c.real), imag(c.imag) {}

Complex& operator=(const Complex& c) { // Complex a(1.0, 0.0), c;

real = c.real, imag = c.imag; // c = a;

return *this;

}

Complex operator+() const { return *this; } // c = +a;

Complex operator-() const { return Complex(-real, -imag); } // c = -a;

double& operator[](int i) { return i == 0 ? real : imag; } // i = c[0];

const double& operator[](int i) const { return i == 0 ? real : imag; }

private:

double real, imag;

friend Complex operator+(const Complex& lhs, const Complex& rhs);

friend bool operator<(const Complex& lhs, const Complex& rhs);

};

Complex operator+(const Complex& lhs, const Complex& rhs) const { // c + a

return Complex(lhs.real + rhs.real, lhs.imag + rhs.imag);

}

bool operator<(const Complex& lhs, const Complex& rhs) { // if (c < a)

return lhs.real < rhs.real && lhs.imag < rhs.imag;

}

Next Time

• Labs for this lecture:

– Lab1: Assignment 11-1 (tomorrow)

– Lab2: Assignment 11-2 (later)

• Next lecture:

– 12 - Template (the day after tomorrow, Nov 30)

	슬라이드 1: Creative Software Design 11 – Copy Constructor, Operator Overloading
	슬라이드 2: Midterm Exam
	슬라이드 3: Schedule Updates
	슬라이드 4: Outline
	슬라이드 5: Copy constructor
	슬라이드 6: When is a copy constructor called?
	슬라이드 7: When is a copy constructor called?
	슬라이드 8: Default copy constructor
	슬라이드 9: Default copy constructor: Example 1
	슬라이드 10: Default copy constructor: Example 2-1
	슬라이드 11: Default copy constructor: Example 2-2
	슬라이드 12: User-defined copy constructor: Example
	슬라이드 13: Default copy constructor & Default constructor
	슬라이드 14: Copy constructor: Example
	슬라이드 15: Quiz 1
	슬라이드 16: Friend Class and Function
	슬라이드 17: Friend Class and Function
	슬라이드 18: Static Members
	슬라이드 19: Static Members
	슬라이드 20: Recall: Function Overloading
	슬라이드 21: Operator Overloading
	슬라이드 22: Operator overloading as member function
	슬라이드 23: Operator overloading as member function
	슬라이드 24: Operator overloading as member function
	슬라이드 25: Operator overloading as nonmember function
	슬라이드 26: Operator overloading as nonmember function
	슬라이드 27: Operator function
	슬라이드 28: Quiz 2
	슬라이드 29: Operator Overloading: <<, >> operator
	슬라이드 30: Operator Overloading: <<, >> operator
	슬라이드 31: Assignment Operator(= operator) Overloading
	슬라이드 32
	슬라이드 33
	슬라이드 34: Default assignment operator: Example
	슬라이드 35: User-defined assignment operator: Example
	슬라이드 36: Operator Overloading: negation operator
	슬라이드 37: Operator Overloading: increment operator
	슬라이드 38: Operator Overloading: increment operator
	슬라이드 39: Operator Overloading: increment operator
	슬라이드 40: Operator Overloading: []
	슬라이드 41: Quiz 3
	슬라이드 42: Operator Overloading: Summary
	슬라이드 43: Operator Overloading: Summary
	슬라이드 44: Operator Overloading: Summary
	슬라이드 45: Operator Overloading: Summary
	슬라이드 46: Operator that can be overloaded
	슬라이드 47: Example 1
	슬라이드 48: Converting Constructor & Operator Overloading
	슬라이드 49: Example 2
	슬라이드 50: Example 2
	슬라이드 51: Example 2
	슬라이드 52: Example 2
	슬라이드 53
	슬라이드 54: Next Time

